Acelerómetro ADXL335 e Interfaz con Arduino Uno 4/5 (1)

Introducción

Tabla de Contenidos

El acelerómetro es un dispositivo electromecánico que mide la fuerza de aceleración debida a la gravedad en la unidad g.

Se puede utilizar en aplicaciones que requieran detección de inclinación.

Acelerómetro ADXL335 con Arduino Uno

El ADXL335 mide la aceleración en los ejes X, Y y Z y proporciona una salida de tensión analógica proporcional a la aceleración en estos 3 ejes.

Los microcontroladores pueden procesar estos voltajes convirtiéndolos en señales digitales utilizando ADC.

En el tutorial de hoy hemos decidido probar el Acelerómetro ADXL345. Para ello hemos usado:

  • Un Arduino UNO.
  • Cables.
  • Protoboard, opcional
  • Acelerómetro ADXL345
  • 3 Leds, opcional
  • 3 Resistencias.

Ejemplo

Encontrar el balanceo y la inclinación del dispositivo usando voltajes analógicos del módulo de acelerómetro y mostrarlos en el monitor serial de Arduino.

Acelerómetro ADXL335 con Arduino Uno conectado

#include const int x_out = A1; /* connect x_out of module to A1 of UNO board */
const int y_out = A2; /* connect y_out of module to A2 of UNO board */
const int z_out = A3; /* connect z_out of module to A3 of UNO board */

void setup() {
Serial.begin(9600);
}

void loop() {
int x_adc_value, y_adc_value, z_adc_value;
double x_g_value, y_g_value, z_g_value;
double roll, pitch, yaw;
x_adc_value = analogRead(x_out); /* Digital value of voltage on x_out pin */
y_adc_value = analogRead(y_out); /* Digital value of voltage on y_out pin */
z_adc_value = analogRead(z_out); /* Digital value of voltage on z_out pin */
Serial.print("x = ");
Serial.print(x_adc_value);
Serial.print("\t\t");
Serial.print("y = ");
Serial.print(y_adc_value);
Serial.print("\t\t");
Serial.print("z = ");
Serial.print(z_adc_value);
Serial.print("\t\t");
//delay(100);

x_g_value = ( ( ( (double)(x_adc_value * 5)/1024) - 1.65 ) / 0.330 ); /* Acceleration in x-direction in g units */
y_g_value = ( ( ( (double)(y_adc_value * 5)/1024) - 1.65 ) / 0.330 ); /* Acceleration in y-direction in g units */
z_g_value = ( ( ( (double)(z_adc_value * 5)/1024) - 1.80 ) / 0.330 ); /* Acceleration in z-direction in g units */

roll = ( ( (atan2(y_g_value,z_g_value) * 180) / 3.14 ) + 180 ); /* Formula for roll */
pitch = ( ( (atan2(z_g_value,x_g_value) * 180) / 3.14 ) + 180 ); /* Formula for pitch */
//yaw = ( ( (atan2(x_g_value,y_g_value) * 180) / 3.14 ) + 180 ); /* Formula for yaw */
/* Not possible to measure yaw using accelerometer. Gyroscope must be used if yaw is also required */

Serial.print("Roll = ");
Serial.print(roll);
Serial.print("\t");
Serial.print("Pitch = ");
Serial.print(pitch);
Serial.print("\n\n");
delay(1000);
}

Otra opción sería que la medición se viera reflejada en los Leds, respecto a los LEDs. Queremos usarlos para que nos indique qué ejes están activos.

Acelerómetro ADXL335 con Arduino Uno conectado y reflejado en leds

//Añadimos la librería SPI para conectar con el sensor AXDL 345.
#include

//Asignamos el pin 10 al puerto "Chip Select".
int CS=10;

//ADXL345 registramos las direcciones del sensor en hexadecimal.
#define DEVID 0x00 //Registro del ID del dispositivo.
#define THRESH_TAP 0x1D //Tap Threshold
#define OFSX 0x1E //X-axis offset
#define OFSY 0x1F //Y-axis offset
#define OFSZ 0x20 //Z-axis offset
#define DURATION 0x21 //Tap Duration
#define LATENT 0x22 //Tap latency
#define WINDOW 0x23 //Tap window
#define THRESH_ACT 0x24 //Activity Threshold
#define THRESH_INACT 0x25 //Inactivity Threshold
#define TIME_INACT 0x26 //Tiempo de inactividad
#define ACT_INACT_CTL 0x27 //Axis enable control for...
#define TIME_FF 0x29 //Free-Fall Time
#define TAP_AXES 0x2A //Axis control for tap/double tap
#define ACT_TAP_STATUS 0x2B //Source of tap/double tap
#define BW_RATE 0x2C //Data ratio y modo de ...
#define POWER_CTL 0x2D //Registro del control ...
#define INT_ENABLE 0x2E //Activación del contr....
#define INT_MAP 0x2F //Control del mapeo de ...
#define INT_SOURCE 0x30 //Recurso de interrupciones
#define DATA_FORMAT 0x31 //Control del formato
#define DATAX0 0x32 //X-Axis Data 0
#define DATAX1 0x33 //X-Axis Data 1
#define DATAY0 0x34 //Y-Axis Data 0
#define DATAY1 0x35 //Y-Axis Data 1
#define DATAZ0 0x36 //Z-Axis Data 0
#define DATAZ1 0x37 //Z-Axis Data 1
#define FIFO_CTL 0x38 //FIFO control
#define FIFO_STATUS 0x39 //FIFO estado

//This buffer will hold values read

//from the ADXL345 registers.
char values[10];
char output[20];
//These variables will be used to hold

//the x,y and z axis accelerometer values.
int x,y,z;
double xg, yg, zg;
char tapType=0;

void setup(){
pinMode(7,OUTPUT);//activamos el modo salida de los leds
pinMode(6,OUTPUT);
pinMode(5,OUTPUT);
//Initiate an SPI communication instance.
SPI.begin();
//Configure the SPI connection for the ADXL345.
SPI.setDataMode(SPI_MODE3);
//Create a serial connection to display the

//data on the terminal.
Serial.begin(9600);

//Set up the Chip Select pin to be an

//output from the Arduino.
pinMode(CS, OUTPUT);
//Before communication starts, the

//Chip Select pin needs to be set high.
digitalWrite(CS, HIGH);

//Create an interrupt that will trigger

//when a tap is detected.
attachInterrupt(0, tap, RISING);

//Put the ADXL345 into +/- 4G range

//by writing the value 0x01 to the DATA_FORMAT register.
writeRegister(DATA_FORMAT, 0x01);

//Send the Tap and Double Tap Interrupts to INT1 pin
writeRegister(INT_MAP, 0x9F);
//Look for taps on the Z axis only.
writeRegister(TAP_AXES, 0x01);
//Set the Tap Threshold to 3g
writeRegister(THRESH_TAP, 0x38);
//Set the Tap Duration that must be reached
writeRegister(DURATION, 0x10);

//100ms Latency before the second tap can occur.
writeRegister(LATENT, 0x50);
writeRegister(WINDOW, 0xFF);

//Enable the Single and Double Taps.
writeRegister(INT_ENABLE, 0xE0);

//Put the ADXL345 into Measurement Mode

// by writing 0x08 to the POWER_CTL register.
writeRegister(POWER_CTL, 0x08); //Measurement mode
readRegister(INT_SOURCE, 1, values);

//Clear the interrupts from the INT_SOURCE register.
}

void loop(){
//Reading 6 bytes of data starting at

//register DATAX0 will retrieve the x,y and z

//acceleration values from the ADXL345.
//The results of the read operation will

//get stored to the values[] buffer.
readRegister(DATAX0, 6, values);

//The ADXL345 gives 10-bit acceleration values, but

//they are stored as bytes (8-bits).

//To get the full value, two bytes must be combined for each axis.
//The X value is stored in values[0] and values[1].
x = ((int)values[1]<<8)|(int)values[0];
//The Y value is stored in values[2] and values[3].
y = ((int)values[3]<<8)|(int)values[2];
//The Z value is stored in values[4] and values[5].
z = ((int)values[5]<<8)|(int)values[4]; //COnversión el valor reportado por el acelerómetro por G's. //With 10 bits measuring over a +/-4g range we can //find how to convert by using the equation: // Gs = Measurement Value * (G-range/(2^10)) //or Gs = Measurement Value * (8/1024) xg = x * 0.0078; yg = y * 0.0078; zg = z * 0.0078; if(tapType > 0)
{
if(tapType == 1){
Serial.println("SINGLE");
Serial.print(x);
Serial.print(',');
Serial.print(y);
Serial.print(',');
Serial.println(z);
}
else{
Serial.println("DOUBLE");
Serial.print((float)xg,2);
Serial.print("g,");
Serial.print((float)yg,2);
Serial.print("g,");
Serial.print((float)zg,2);
Serial.println("g");
}
detachInterrupt(0);
delay(500);
attachInterrupt(0, tap, RISING);
int Type=0;
}
if(x<-20){//condición para que reconozca

//el movimiento del eje.
digitalWrite(7,HIGH);
}
else{digitalWrite(7,LOW);}
if(y<-20){ digitalWrite(6,HIGH);} else{digitalWrite(6,LOW);} if(z!=-1){//el sensor cuando está bocaabajo marca -1G digitalWrite(5,HIGH);} else{digitalWrite(5,LOW);} delay(10); } //This function will write a value to a register on the ADXL345. //Parameters: // char registerAddress - The register to write a value to // char value - The value to be written to the specified register. void writeRegister(char registerAddress, char value){ //Set Chip Select pin low to signal the beginning of an SPI packet. digitalWrite(CS, LOW); //Transfer the register address over SPI. SPI.transfer(registerAddress); //Transfer the desired register value over SPI. SPI.transfer(value); //Set the Chip Select pin high to signal the //end of an SPI packet. digitalWrite(CS, HIGH); } //This function will read a certain number of //registers starting from a specified address //and store their values in a buffer. //Parameters: // char registerAddress - The register addresse //to start the read sequence from. // int numBytes - The number of registers that should be read. // char * values - A pointer to a buffer where the //results of the operation should be stored. void readRegister(char registerAddress, int numBytes, char * values){ //Since we're performing a read operation, //the most significant bit of the register address should be set. char address = 0x80 | registerAddress; //If we're doing a multi-byte read, bit 6 needs to be set as well. if(numBytes > 1)address = address | 0x40;

//Set the Chip select pin low to start an SPI packet.
digitalWrite(CS, LOW);
//Transfer the starting register address that needs to be read.
SPI.transfer(address);
//Continue to read registers until we've read

//the number specified, storing the results to the input buffer.
for(int i=0; i<numBytes; i++){
values[i] = SPI.transfer(0x00);
}
//Set the Chips Select pin high to end the SPI packet.
digitalWrite(CS, HIGH);
}

void tap(void){
//Clear the interrupts on the ADXL345
readRegister(INT_SOURCE, 1, values);
if(values[0] & (1<<5))tapType=2;
else tapType=1;;
}

Califique esto

También te puede interesar

Deja un comentario

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Pin It on Pinterest

Shares